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Abstract. The method recently proposed by Skála andČı́žek for calculating perturbation
energies in a strict sense is ambiguous because it is expressed as a ratio of two quantities
which are separately divergent. Even though this ratio comes out finite and gives the correct
perturbation energies, the calculational process must be regularized to be justified. We examine
one possible method of regularization and show that the proposed method gives traditional
quantum mechanical results.

Recently, in a letter in this journal [1], Skála andČı́žek (SC) proposed a method to calculate
perturbation energies using non-square-integrable functions. The method of SC is further
augmented in a comment by Guardiola and Ros (GR) [2]. The purpose of our present
comment is to further point out that in a strict sense, the SC method for the perturbation
energies can result in a ratio of two divergent quantities, so that while this ratio may remain
finite in a practical numerical calculation, a regularization procedure is needed to justify the
finite result. We have examined one such possible regularization procedure and have made
a contact between the SC method and traditional quantum mechanics (QM) results.

Briefly, the SC method regards thenth-order perturbation equation as a parametric
differential equation withEn as the parameter,

(H0− E0)ψn(En, x) = (En − Ṽn)ψ0(x) (1)

where

H0 = − d2

dx2
+ V0 (2)

and

Ṽnψ0 ≡ V1ψn−1−
n−1∑
i=1

Eiψn−i . (3)

Here we have chosen to introduceṼn as the effective perturbation in thenth-order equation.
For n = 1, the sum on the RHS of equation (3) vanishes andṼ1 is the same as the real
perturbationV1. We also adopt the convention that all the wavefunctions are physical unless
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the dependence on the parameterEn is explicitly displayed. For this form of equation (1),
thenth-order equation is similar in form to the first-order equation.Ṽn is a known function
since all lower-order quantities are assumed to be known. In traditional QM perturbation
theory, one left-multiplies equation (1) with the zeroth-order wavefunctionψ0. Under the
usual normalization conditions,

〈ψ0|ψ0〉 = 1 and 〈ψ0|ψi〉 = 0 ∀i 6= 0 (4)

one recovers the standard QM result

En = 〈ψ0|Ṽn|ψ0〉 = 〈ψ0|V1|ψn−1〉. (5)

OnceEn is correctly obtained,ψn(En, x) is obtained by solving the ordinary differential
equation in equation (1).

SC propose that instead of obtainingEn in the standard way first, one treats equation (1)
as a parametric ordinary differential equation withEn being a parameter, and go on to show
that

En = −ψn(0, x0)

ψn(1, x0)− ψn(0, x0)
≡ −ψn(0, x0)

F (x0)
(6)

wherex0 is a point such that the boundary conditions

ψn(En, x0) = 0 n = 0, 1, . . . (7)

are met for the physical energiesEn. Since neither 0 nor 1 is the necessarynth-order energy
correctionEn, the functionsψn(0, x) andψn(1, x) are in generalnot square integrable, hence
the name for the method.

Since the ground-state wavefunction vanishes only at the endpoints of the boundary†
and the nodal points of the wavefunctions of the excited states shift upon turning on the
perturbation, theonly choice forx0 consistent with boundary conditions (7) isx0 = ∞. In
a practical numerical calculation, which is always carried out in between finite ranges,x0 is
assigned an arbitrarily large but finite value. But asx0 approaches infinity, bothψn(0, x0)

andψn(1, x0) diverge, and a regularization process is needed to make sense of equation (6).
Using the form of equation (1) and taking into account the advantage of its similarity

of form to the first-order equation,ψn(α, x) can easily be solved, say, using the Dalgarno–
Lewis method [3] or logarithmic perturbation method [4, 5] to obtain,

ψn(α, x) = −ψ0(x)

∫ x

b

dy
1

ψ2
0(y)

∫ y

a

dz (α − Ṽn)ψ2
0(z) (8)

wherea and b are appropriate constants to satisfy the boundary conditions, in agreement
with the results of GR.

From equation (8), one recovers the universal functionsF(x) (given as equation (15)
in [2])

F(x) = −ψ0(x)

∫ x

b

dy
1

ψ2
0(y)

∫ y

a

dz ψ2
0(z). (9)

Together with equation (6), one can see that thenth-order perturbation energyEn is given
by

En = J (Ṽn, x0)

J (1, x0)
(10)

† For the purpose of illustration, we consider QM on a half line [0,∞).
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where the functionalJ (V, x) is given by

J (V, x) ≡
∫ x

0
dy

1

ψ2
0(y)

∫ y

0
dz V (z)ψ2

0(z) (11)

and the boundary condition at the endpoints has been taken care of appropriately.
Next, we would like to point out that, at least in the example of the ground state of the

x4 anharmonic oscillator, the expansion ofEn in equation (10) can be ill defined because
both the numerator and the denominator diverge asx0 → ∞. This can easily be seen by
combining the well known results that̃Vn is of polynomial form in the Bender–Wu [6]x4

anharmonic oscillator and the mean value theorem.
From the form of equation (11), one doesnot expecta priori that in the limitx0→∞,

the ratioJ (Ṽn, x0)/J (1, x0) becomes finite andx0 independent even though numerically this
comes out to be so. Hence to make sense out of equations (10) and (11), a regularization
procedure is in order. One can justify the numerical result obtained by assigning an
arbitrarily large but finite value tox0 only after the result is regularized and the limit
is proven to exist.

The regularization procedure being proposed here is similar to the one we previously
used in the extension of logarithmic perturbation theory to excited bound states in one
dimension by appropriately mixing in the ghost state [7]. For the zeroth-order solution
(unperturbed state), instead of using the square-integrable eigenstate wavefunctionψ0, we
can mix in the non-square-integrable ghost stateχ0 by defining

90(x) ≡ ψ0(x)+ iσχ0(x) (12a)

ρ(x) ≡ 92
0(x) (12b)

and

Jσ [S] ≡
∫ ∞

0
dy

1

ρ(y)

∫ y

0
dz ρ(z)S(z). (12c)

Note that in equation (12b), ρ(x) is the ordinary square of90(x), not |90(x)|2. Then
equation (10) can be rewritten on firm mathematical grounds as

En = lim
σ→0

Jσ [Ṽn]

Jσ [1]
. (13)

Now, we can show that the limit in equation (13) is well defined. This follows from [7]

Jσ [S] = i

σ

∫ ∞
0

dy 90(y)ψ0(y)S(y)

= i

σ

∫ ∞
0

dy ψ2
0(y)S(y)+ · · · (14)

where· · · is a σ independent term. Upon substituting equation (14) into equation (13), we
recover

En =
∫∞

0 dy ψ2
0(y)Ṽn(y)∫∞

0 dy ψ2
0(y)

=
∫ ∞

0
dy ψ0(y)V1(y)ψn−1(y) (15)

which is the ordinary QM result upon using equations (3) and (4). Hence, we have provided
a rigorous justification of the SC method. It is interesting to note that we have also utilized
non-square-integrable functions through the ghost state mixing.

Therefore, we see that the SC method correctly gives the perturbation energies, but as
a ratio of two divergent quantities. We have regularized it through ghost state mixing and
our final result is independent of the mixing parameterσ . It is only after establishing the



4136 C K Au et al

existence of the limit in equation (13) that we can accept the numerical convergence in
equation (10) advocated in the SC method.
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[1] Skála L andČı́žek J 1996J. Phys. A: Math. Gen.29 L129
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